在拟南芥中,细胞分裂素(CK)信号主要由组氨酸激酶(AHKs),组氨酸磷酸转移蛋白(AHPs)和应答调节因子(ARRs)介导。拟南芥组氨酸磷酸转移ahp2,3,5和B 型拟南芥反应调节因子arr1,10,12 三重突变体几乎完全缺失CK信号,且ahp2,3,5突变体被报道为耐盐突变体。越来越多的证据表明 CK 代谢和 CK 信号传导与植株适应各种非生物胁迫(包括盐度)之间的关系,但参与该过程的下游代谢变化仍有待阐明。 2021年11月,德克萨斯理工大学科研团队在PNAS(IF 11.205)杂志上发表题目为“Defective cytokinin signaling reprograms lipid and flavonoid gene-to-metabolite networks to mitigate high salinity in Arabidopsis”的研究成果,在非盐和盐胁迫条件下,对拟南芥野生型(WT)和两个CK信号三重突变体ahp2,3,5、arr1,10,12植株进行了全面的代谢组学和转录组学分析,揭示了盐胁迫下CK信号介导的遗传代谢网络的调控机制,为CK生物学在植株耐盐生物技术中的有效应用提供了理论依据。 研究材料 拟南芥植株 技术路线 · 步骤1:ahp2,3,5和arr1,10,12突变体表现出增强的耐盐性; · 步骤2:WT、ahp2,3,5和arr1,10,12植株在非盐和盐胁迫条件下的综合代谢物分析; · 步骤3:WT、ahp2,3,5和arr1,10,12植株响应盐胁迫的综合转录组分析; · 步骤4:WT、ahp2,3,5和arr1,10,12植株响应盐胁迫的GO和 KEGG 富集分析以及调控网络分析。 1. ahp2,3,5和arr1,10,12突变体表现出增强的耐盐性 作者首先将拟南芥野生型(WT)和两个CK信号三重突变体ahp2,3,5、arr1,10,12的10 天龄幼苗转移到补充有 200 mM NaCl 的培养皿中,维持 6 天以验证其耐盐性。结果显示与WT植株相比,ahp2,3,5和arr1,10,12突变体植株表现出较高的耐盐性。WT 植株的存活率不到 5%,而ahp2,3,5和arr1,10,12突变体存活率则分别超过 95%、90%(图1)。
研究结果
图1 WT、ahp2,3,5和arr1,10,12植株的耐盐性研究 2. WT、ahp2,3,5和arr1,10,12植株在非盐和盐胁迫条件下的综合代谢物分析 10 天龄的 WT、ahp2,3,5和arr1,10,12植株转移到补充有 0 mM(非盐胁迫)或 200 mM NaCl(盐胁迫)的培养基中培养 24 小时后,采用气相色谱质谱仪(GC-TOF-MS)和液相色谱质谱仪 (LC-Q-TOF-MS)对每个基因型的整株幼苗进行初级和次级代谢产物综合分析。结果显示在非盐和盐胁迫条件下,ahp2,3,5和arr1,10,12突变体的代谢变化相似,但与WT 植株不同。突变体与 WT 植株的比较显示,ahp2,3,5 -C/WT-C 和arr1,10,12 -C/WT-C中分别有 85 和 66 种代谢物增加,3 和 4 种代谢物减少,而在ahp2,3,5 -S/WT-S 和arr1,10,12 -S/WT-S 比较中,分别有83 和 68 种代谢物增加,4 种和 8 种代谢物减少,表明就改变的代谢物数量而言,在盐胁迫下,每个单独的基因型中发生了较小的代谢变化(图2)。 韦恩图显示盐胁迫前后WT和突变体中共鉴定出83 个(80 个增加和3个减少)差异代谢物(DPMs),分为六大类:1) 糖类,2) 氨基酸和多胺,3) 脂质和甾醇,4) 类黄酮和酚类,5) 硫代葡萄糖苷, 6) 其他一般代谢物。大多数 DPMs主要富集在与“*基氨基酸代谢”、“甘油脂代谢”、“丙氨酸、天冬氨酸和谷氨酸代谢”等通路上。结果显示,与非盐和盐胁迫条件下的 WT 植株相比,CK 信号ahp2,3,5和arr1,10,12突变体中脂质代谢相关和类黄酮代谢相关通路的重编程更为显著。
图2 WT、ahp2,3,5和arr1,10,12植株在非盐和盐胁迫条件下的综合代谢物分析
3. WT、ahp2,3,5和arr1,10,12植株响应盐胁迫的综合转录组分析
10 天龄的 WT、ahp2,3,5和arr1,10,12植株也在盐胁迫后 24 小时收集,使用微阵列技术进行转录组分析,从分子水平上评估对盐度响应的代谢变化。结果显示ahp2,3,5 -C / WT-C和arr1,10,12 -C / WT-C比较中分别有857 和 567 个基因上调,1129 和 830 个基因下调;在ahp2,3,5 -S/WT-S 和arr1,10,12 -S/WT-S 比较中,分别有 594 和 674 个基因上调, 719 和 843 个基因下调。韦恩图显示盐胁迫前后WT和突变体比较中有 403 个重叠的差异基因(DEG, 133 个上调和 270 个下调),这些变化可能有助于突变基因型的耐盐性,并且通过抑制 CK 信号传导进行调节(图3)。
图3 WT、ahp2,3,5和arr1,10,12植株响应盐胁迫的综合转录组分析
4. WT、ahp2,3,5和arr1,10,12植株响应盐胁迫的GO和 KEGG 富集分析以及调控网络分析
将403 个DEGs 进一步做GO和KEGG分析,并将在ahp2,3,5和arr1,10,12突变体的转录组数据集与在非盐和盐胁迫条件下获得的 WT 植株的转录组数据集之间的比较中,总共确定的 1,215 个DEGs做调控网络分析。GO、KEGG 和调控网络的分析结果表明在非盐和盐胁迫条件下,相对于 WT 植株,富集的基因主要参与次级代谢(例如花青素、黄酮类化合物、萜烯和脂质生物合成途径)、营养同化(例如铁、硫酸盐和糖转运)和氧化还原酶活性,这与ahp2,3,5和arr1,10,12植株中与类黄酮、脂质和甾醇相关的几种代谢物的积累一致(图3,图4)。
图4 调控网络分析
小编小结
综合代谢组和转录组分析结果表明,与野生型相比,CK突变体在非盐和盐胁迫条件下积累许多初级(例如,糖、氨基酸和脂质)和次级(例如,类黄酮和甾醇)代谢物,表明应激相关代谢物的积累有助于提高耐盐性,且类黄酮和脂类库的重编程与转录水平的变化高度协调。该研究有助于开发具有耐盐能力的作物,作为确保气候危机时代全球粮食安全的关键驱动因素。
中科优品推荐
【中科新生命】可提供基于高质海量数据库的非靶向植物代谢组学服务,同时实现初生代谢物和次生代谢物的检测分析,助力植物方向研究。